

0040-4039(93)E0179-N

The Nature of Electronic Interactions Governing the Control of Π-Facial Selectivity in the Capture of 5-Substituted(X)-2-Adamantyl Radicals: Electrostatic *versus* Hyperconjugative Effects

William Adcock*, Christopher I. Clark and Neil A. Trout

School of Physical Sciences, The Flinders University of South Australia, Adelaide, South Australia, 5001

Abstract: An electrostatic rather than a hyperconjugative effect appears to be the dominant factor governing the control of Π -facial selectivity in the capture of 5-substituted(X)-2-adamantyl radicals.

Recently, le Noble et al¹ reported that capture of the 5-phenyladamant-2-yl radical $(1,X=C_6H_5)$, a species devoid of conformational and steric bias, occurs preferentially on the *zu* or *syn* face (58:42) i.e. dominant face preference which is *antiperiplanar* to the more electron-rich vicinal C-C bonds flanking C2. This result has been reconciled within Cieplak's transition-state hyperconjugation model.^{1,2} Herein we report results from the trimethylstannylation of a series of (E)- and (Z)-2,5-dihaloadamantanes (2 and 3, respectively) which strongly suggests that hyperconjugation is unimportant as a factor governing the control of Π -facial selectivity in the capture of 5-substituted(X)adamant-2-yl radicals (1) and, moreover, that an electrostatic field model appears more appropriate for explaining the phenomenon.

Product distributions for treatment of the chloro-iodo, bromo-iodo, and fluoro-bromo derivatives of 2 and 3 (X=I, Y=Cl; X=I, Y=Br; X=F, Y=Br) with Me₃SnLi in THF at 0°C in the absence and presence of dicyclohexylphosphine (DCPH) are listed in Table 1. An examination of the results reveals the following diagnostic traits of a free radical chain pathway for tin substitution (Scheme 1) as previously defined for 1,4-dihalobicyclo[2.2.2]octanes³: (i) the presence of DCPH (an excellent alkyl radical trap)⁵ is able to divert the reactions from predominant tin substitution to mainly reduction products by trapping the initially formed radicals (1, X=F; 4 and 5, Y=Cl or Br). (ii) the presence of the ditin compounds in the case of the chloro-iodides

extent	of reac- tion, %	76	100	100	8	001	100	99	100	100	61	\$	100	16	32	100	100
product distribution proportions, 360.0		3	10		7	9		13	4	9	15	28	4				
	Z E Z 215Sn 2Sn5Sn 2Sn5Sn	3	6		64	9		13	38	9	15	28	4				
	Z 215Sn	3						14			00	÷					
	E 215Sn	3						12			9	ŝ					
	Z 2Br5Sn										27	54	2				
	E 2Br5Sn							33	=	ŝ							
	Z 2CI5 S n				41	76	٢										
	E Z E Z E Z E 2CI5Sn 2CI5Sn 2Br5Sn 2I5Sn	88	72	12													
	Z 2Sn5F													51	31	55	39
														41	25	43	59
	Ad IFAd 2CIAd 2Brad ISnad 2Snad 2Sn5F		1			***			e			e					
	lSnAd		-					4	ŝ	٢	e	7	ŝ				
	2BrAd							ដ	7	20	52	6	80				
	2CIAd	20	٢	88	55	11	93										
	1FAd													80	4	7	32
		1	0		Ð	•0	_	63	4 3	00 Mari	ß	43	5	0		•	
	addit- ived	DODC	none	DCPH	none	none	DCPH	none	none	DCPH	none	none	DCPH	none	DCPH	none	DCPH
	equiv. of Me ₃ SnLi	1	2	3	1	2	7	1	7	7	1	7	7	7	2	6	6
	Compound	2: X=L Y=CI	2; X=I, Y=C	2; X=1, Y=CI	3; X=1, Y=Cl	3; X=I, Y=CI	3; X=I, Y=CI	2; X=L Y=Br	2; X=I, Y=Br	2; X=I, Y=Br	3; X=I, V=Br	3; X=L Y=Br	3; X=L, Y=Br	2; X=F, Y=Br	2; X=F, Y=Br	3; X=F, Y=Br	3; X=F, Y=Br
	So. No.	-	6	m	4	ŝ	9	2	oo	6	01	11	12	13	14	15	16

TABLE 1. Product Distribution Analysis of the Reaction between (E)- and (Z)-2,5-Dihakoadamantanes (2 and 3, respectively) and (Trimethylstannyl)lithium in THFa

a. In a typical reaction, Me₃SuLi (2 mole equivalent) in tetrahydrofuran (prepared by reacting bexamethylditin (0.67 g, 2.08 mmol) in anhydrous THF (5 ml) with lithium (8.32 mmol) at 0°C under argon for 5 hrs) was added dropwise to a well-stirred solution of the 2.5-dihaloadamantane (ca. 200 mg; 1 mole equivalent) in THF (10 ml) maintained at 0°C under N₂. After allowing the reaction mixture to warm to room temperature and then to stir for a further 30 minutes, the reaction was quenched with a saturated aqueous ammonium chloride solution before being extracted with a saturated aqueous ammonium chloride solution before being extracted with CH₂Cl₂. After drying (Mg SO₄), the solvent was removed in vacuo to afford the reaction product mixture which was analysed by VPC and NMR (¹³C and ¹¹³Sn) in order to characterize and determine the relative proportion of products. b. The VPC products proportions (%) were determined by comparison of electronically integrated peak areas, giving errors to about 2-3%. Peak areas were not corrected for appropriate response factors. c. Ad = adamantane; Sn = SnMe₃. d. DCPH = dicyclohexylphosphine (10 mole equivalent). constitutes powerful evidence for the $S_{RN}1$ like pathway (Scheme 1) since the chloro-tin derivatives, being relatively inert towards Me₃SnLi, are not intermediates in their formation. (iii) the significant presence of the iodo-tin compounds in the product mixtures of the chloro- and bromo-iodides is perplexing in terms of a non-chain radical process but clearly intelligible in terms of the pathway outlined in Scheme 1.^{3,4}

Scheme I^{a-e}

$XC_mH_nY + Me_3Sn = XC_mH_n + Y + Me_3Sn +$	(step	1)
$XC_mH_n \bullet + Me_3Sn - \longrightarrow [XC_mH_nSnMe_3] =$	(step	2)
$[XC_mH_nSnMe_3] = + XC_mH_nY \longrightarrow XC_mH_nSnMe_3 + XC_mH_n + Y^{-1}$	(step	3)
$[XC_mH_nSnMe_3] = \longrightarrow X^- + C_mH_nSnMe_3$	(step	4)
$XC_mH_nY + \bullet C_mH_nSnMe_3 \longrightarrow YC_mH_nSnMe_3 + XC_mH_n \bullet$	(step	5)
• $C_m H_n Sn Me_3 + Me_3 Sn$	(step	6)
$[Me_3SnC_mH_nSnMe_3] = + XC_mH_nY \longrightarrow Me_3SnC_mH_nSnMe_3 + XC_mH_n + Y^-$	(step	7)
• $C_m H_n Sn Me_3 + SH \longrightarrow Me_3 Sn C_m H_{n+1} + S \bullet$	(step	8)
2Me ₃ Sn • Me ₃ SnSnMe ₃	(step	9)

^a m=10, n=14; X= Cl or Br; Y= I. ^b Li⁺ is understood to be present as the counter ion. ^c For expedience, the radical-halide ion adduct is understood to occur prior to steps 1, 3, and 7. ^d The tin reagent is given as being monomeric for pictorial clarity. However, it should be remembered that its state of aggregation is unknown. ^e Solvent = SH.

The major focus of this paper is the stereochemical outcome (en or zu face preference, see 1) of the capture (steps 5 and 6; Scheme 1) of the intermediate 5-trimethylstannyladamant-2-yl radical $(1,X=SnMe_3)$ which is mainly formed as a result of fragmentation (step 4, Scheme 1) of the appropriate halo-tin radical anions (6 and 7, Y=Cl or Br) and, as well, by dissociative electron transfer between the initially formed bromoand iodo-tin compounds (2 and 3; Y=Br or I, X=SnMe_3) and Me_3Sn^{.6} Note that the epimeric ditin and iodo-tin mixtures obtained from the respective chloro- and bromo-iodides (Table 1) are all, within experimental error, 50:50 (E:Z). Thus, with respect to electronic control of Π -facial diastereoselectivity, the powerful σ -electron donor Me_3Sn group is clearly an ineffectual bystander! This is a most surprising and profound result given the dramatic effect of (E)-5-Me_3Sn on the stability and behaviour of the adamant-2-yl carbocation.⁷ It was expected that this double hyperconjugative effect would also prevail in the corresponding radical species, although to a lesser degree, to enforce a significant *en* face preference.⁸ We can only conclude that the much favoured Cieplak hyperconjugative model^{1,2} for rationalising Π -facial selectivity in the current circumstances is seriously flawed.

Finally, it can be seen (Table 1) that stannylation of the epimeric fluoro-bromides (2 and 3; X=F, Y=Br) give essentially the same product mixture (entries 13 and 15). It is therefore clear that the products are formed from a common intermediate, namely, the 5-fluoroadamant-2-yl radical (1,X=F). This is confirmed by the results of stannylation in the presence of DCPH (entries 14 and 16). The modest *zu* face preference (E/Z = 44/56) observed for the capture of this radical species by Me₃Sn⁻ suggests an electrostatic steering effect is operative as a consequence of the polarity of the *fluorine* substituent ($\sigma_F = 0.40$).⁹ In this light the aforementioned outcome of the Me₃Sn group ($\sigma_F \sim 0$)¹⁰ becomes intelligible in terms of an electrostatic field model as does the result reported¹ for the C₆H₅ substituent ($\sigma_F = 0.16$).⁹ It should be noted that this model has been shown recently to be best able to rationalize the stereoselectivities of nucleophilic additions to 5-substituted(X)-2-methyleneadamantanes not mediated by carbocationic intermediates.^{11,12}

Full details of this study will be reported in a main paper.

ACKNOWLEDGEMENT

We thank the Australian Research Council for financial assistance.

REFERENCES AND NOTES

- 1. Bodepudi, V.R.; le Noble, W.J. J. Org. Chem. 1991, 56, 2001 and references cited therein.
- (a) Cieplak, A.S. J. Am. Chem. Soc. 1981, 103, 4540. (b) Cieplak, A.S.; Tait, B.D.; Johnson, C.R. J. Am. Chem. Soc.1987, 109, 5875.
- 3. Adcock, W.; Iyer, V.S.; Kitching, W.; Young, D. J. Org. Chem. 1985, 50, 3706.
- (a) The halogen atom abstraction step of Scheme 1 (step 5) is competitive when X or Y is I but not Cl or Br. Such reactions occur readily for alkyliodides. In contrast, halogen atom transfer is much slower for alkylbromides and -chlorides ((CH₃)₃CX : X = I, k = 3 x 10⁶ M⁻¹s⁻¹; X = Br, k ≈ 4.6 x 10³ M⁻¹s⁻¹; X = Cl, k = 6 x 10² M⁻¹s⁻¹)^{4b} (b) Newcomb, M.; Sanchez, R.M.; Kaplan, J. J. Am. Chem. Soc. 1987, 109, 1195.
- 5. Smith, G.F.; Kuivila, H.G.; Simon, R.; Sultan, L. J. Am. Chem. Soc. 1981, 103, 833.
- 6. Treatment of a mixture (E/Z = 40/60) of 2-bromo-5-trimethylstannyladamantane (2 and 3; X = SnMe₃, Y = Br) with Me₃SnLi (see footnote to Table 1) provides a 50:50 mixture (determined by VPC) of the ditin compounds (2 and 3; X = Y = SnMe₃). An attempt to separate these mixtures by HPLC (silica gel/hexane) was not successful.
- 7. (a) Adcock, W.; Coope, J.; Shiner, V.J., Jr.; Trout, N.A. J. Org. Chem. 1990, 55, 1411. (b) Adcock, W.; Trout, N.A. J. Org. Chem. 1991, 56, 3229.
- (a) The stereoelectronic requirement for optimization of double hyperconjugation (antiperiplanar relationship of the participant orbitals)^{7,8b,c} is met in the E but not the Z isomer of 2,5-disubstituted adamantanes. It should be noted that unlike the 2-adamantyl cation which is pyramidal,^{8d} the 2-adamantyl radical is planar.^{8e} (b) Krijner, B.; Beverloo, H.B.; Verhoeven, J.W.; Reiss, C.A.; Goubitz, K.; Heijdenrijk, D. J. Am. Chem. Soc. 1989, 111, 4433 and references cited therein. (c) Adcock, W.; Krstic, A.R.; Duggan, P.J.; Shiner, V.J., Jr.; Cooper, J.; Ensinger, M.W. J. Am. Chem. Soc. 1990, 112, 3140. (d) Dutler, R.; Rank, A.; Sorensen, T.S.; Whitworth, S.M. J. Am. Chem. Soc. 1989, 111, 9024. (e) Kira, M.; Akiyama, M.; Ichinose, M.; Sakurai, H. J. Am. Chem. Soc. 1989, 111, 8256.
- 9. Adcock, W.; Abeywickrema, A.N. J. Org. Chem. 1982, 47, 2957.
- (a) Adcock, W.; Aldous, G.L.; Kitching, W. J. Organomet. Chem. 1980, 202, 395.. (b) Adcock, W.; Iyer, V.S. J. Org. Chem. 1985, 50, 1538.
- 11. Adcock, W.; Cotton, J.; Trout, N.A. J. Org. Chem. . Submitted for publication.
- (a) Electrostatic control of Π-facial selectivity of nucleophilic and electrophilic additions has been proposed for other model systems.^{12b,c}
 (b) Paddon-Row, M.N.; Wu, Y.-D.; Houk, K.N. J. Am. Chem. Soc. 1992, 114, 10, 638 and references cited therein.
 (c) Wu, Y.-D, Na, J.; Houk, K.N. J. Org. Chem. 1993, 58, 4625 and references cited therein.

(Received in UK 27 September 1993; revised 3 November 1993; accepted 5 November 1993)