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Abstrrct: An electrostatic rather than a hyperconjugative effect appears to be the dominant factor governing the 

control of lI-facial selectivity in the capture of 5-substituted(X)-2-edamaetyl radicals. 

Recently, le Noble et al1 reported that capture of the S-phenyladamant-2-yl radical (l,X=QHs), a species 
devoid of conformational and steric bias. occurs pteferentially on the zu or ryn face (58:42) i.e. dominant face 
preference which is unfipuiplanar to the more electron-rich vicinal C-C bonds flanking C2. This result has 
been reconciled within Cieplak’s transition-state hyperconjugation model.1~2 Herein we mport results from the 
trimethylstannylation of a series of(E)- and (Z)-2,5dihal oadamantanes (2 and 3, respectively) which strongly 
suggests that hyperconjugation is unimportant as a factor governing the control of II-facial selectivity in the 
capture of 5-substituted(X)adama2-yl radicals (1) and. moreover, that an electrostatic field model appears 
more appropriate for explaining the phenomenon. 

1 2 3 

Product distributions for tmatment of the chloro-iodo, bromo-iodo, and fl~ro-bromo derivatives of 2 and 
3 (X=1, Y=Cl; X=I, Y=Br; X=F, Y=Br) with Me$nL,i in THF at O’C in the absence and presence of dicyclo- 
hexylphosphine (DCPI-I) are listed in Table 1. An examination of the results reveals the following diagnostic 
traits of a free radical chain pathway for tin substitution (Scheme 1) as previously defined for 1,4-dihalo- 
bicyclo[2.2.2]octanes3: (i) the presence of DCPH (an excellent alkyl radical trap)s is able to divert the reactions 
from predominant tin substitution to mainly reduction products by trapping the initially formed radicals (1, 
X=F; 4 and 5. Y=Cl or Br). (ii) the presence of the ditin compounds in the case of the chloro-iodides 
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constitutes powerful evidence for the SRN~ like pathway (Scheme 1) since the chloro-tin derivatives, being 
relatively inert towards Me+Li, ate not intermediates in their formation. (iii) the significant presence of the 
iodo-tin compounds in the product mixtures of the chloro- and bromo-iodides is perplexing in terms of a non- 
chain radical process but clearly intelligible in terms of the pathway outlined in Scheme 1.334 

Scheme Isbe 

X-Y + Me3Sn - * XC&a* + Y- + Me3Sn l 

X&H, l + Me$n - c [XC!,H,SnMe3] o 

[XC,H,SnMc3] 5 + XC,&,,Y * XC,HaSnMc3 + XC,&, l + Y- 
[XC,H,SnMe3] 5 * X - + l C,H,SnMe3 

XC,,,H,,Y + l C,,,H,SnMe3 - - YC,,,H,SaMes + XCJ-I, . 

l C,H,SnMes + MesSn - - [Me$SnC,H,SnMe~] 5 

[MexSnC,H,SnMe3] x + XC&,Y * Me3SnC,H,SnMes + XC,,& . + Y - 

l C,H,SnMeJ + SH ) MexSnC,H,+t + S* 

2Me3S n l * MesSnSnMes 

(step 1) 

(step 2) 

(step 3) 
(step 4) 

(step 5) 

(step 6) 

(step 7) 

(step 8) 

(step 9) 

* m=lO, 1~14 ; X= Cl or Br ; Y= I. b Li+ is understood to be present as the cpter 
radical-halide ion adduct is understood to occur prior tc steps 1, 3, and 7. 

ion. ’ Par expedience, the 
The tin reagent is given as being 

monomeric for pictorial clarity. However, it should be remembered that its state of aggregation is unknown. 
s Solvent - SH. 

The major focus of this paper is the stereochemical outcome (en or zu face preference, see 1) of the 
capture (steps 5 and 6; Scheme 1) of the intermediate 5-trimethylstaunykuiamant-2-yl radical (l,X=SnMe3) 
which is mainly formed as a result of fragmentation (step 4, Scheme 1) of the appropriate halo-tin radical 
anions (6 and 7, Y=Cl or Br) and, as well, by dissociative electron transfer between the initially formed bromo 
and iodo-tin compounds (2 and 3; Y=Br or I, X=SnMes) and Me$n-.a Note that the epimeric ditin and k&-tin 
mixtures obtained from the respective chloro- and btomo-iodides (Table 1) are all, within experimental error, 
5050 (EZ). Thus, with respect to electrouic control of II-facial diastereoaelectivity, the powerful a-electron 
donor MegSn group is clearly an ineffectual bystander! This is a most surprising and profound result given the 
dramatic effect of (E)-S-Me3Sn on the stability and behaviour of the adamant-Zyl carbocation.7 It was 
expected that this double hyperconjugative effect would also prevail in the corresponding radical species, 
although to a lesser degree, to enforce a significant en face preferences We can only conclude that the much 
favoured Cieplak hyperconjugative model * 2 for rationalising II-facial selectivity in the current circumstances 
is seriously flawed. 

Finally, it can be seen (Table 1) that stannylation of the epimeric fluoro-bromides (2 and 3; X=F, Y=Br) 
give essentially the same product mixture (entries 13 and 15). It is therefore clear that the products are formed 
from a common intermediate, namely, the S-fluomadaman t-2-yl radical (l,X=F). This is confirmed by the 
results of stannylation in the presence of DCPH (entries 14 and 16). The modest ru face preference (B/Z = 
44156) observed for the capture of this radical species by Me-@n- suggests an electrostatic steering effect is 
operative as a consequence of the polarity of the fluorine substituent (QP = 0.40).9 In this light the 
aforementioned outcome of the MegSn group (cry _ O)l” becomes intelligible in terms of an electrostatic field 
model as dces the result reported1 for the C& substituent (C&J = O-16).9 It should be noted that this model has 
been shown recently to be best able to rationalize the stereoselectivities of nucleophilic additions to S- 
substituted(X)-2-adamautanones as well as electmphihc additions to S-substituted(X)-2-methyleneadamantanes 
not mediated by carbocationic intermediates.**J2 

Full details of this study will be reported in a main paper. 
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