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Abstract: An electrostatic rather than a hyperconjugative effect appears to be the dominant factor governing the
control of I1-facial selectivity in the capture of S-substituted(X)-2-adamantyl radicals.

Recently, le Noble et al! reported that capture of the 5-phenyladamant-2-yl radical (1,X=CgHs), a species
devoid of conformational and steric bias, occurs preferentially on the zu or syn face (58:42) i.e. dominant face
preference which is antiperiplanar to the more electron-rich vicinal C-C bonds flanking C2. This result has
been reconciled within Cieplak's transition-state hyperconjugation model.12 Herein we report results from the
trimethylstannylation of a series of (E)- and (Z)-2,5-dihaloadamantanes (2 and 3, respectively) which strongly
suggests that hyperconjugation is unimportant as a factor governing the control of Il-facial selectivity in the
capture of 5-substituted(X)adamant-2-yl radicals (1) and, moreover, that an electrostatic field model appears
more appropriate for explaining the phenomenon.
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Product distributions for treatment of the chloro-iodo, bromo-iodo, and fluoro-bromo derivatives of 2 and
3 (X=I, Y=CI; X=I, Y=Br; X=F, Y=Br) with Me3SnLi in THF at 0°C in the absence and presence of dicyclo-
hexylphosphine (DCPH) are listed in Table 1. An examination of the results reveals the following diagnostic
traits of a free radical chain pathway for tin substitution (Scheme 1) as previously defined for 1,4-dihalo-
bicyclo[2.2.2)octanes?: (i) the presence of DCPH (an excellent alkyl radical trap)3 is able to divert the reactions
from predominant tin substitution to mainly reduction products by trapping the initially formed radicals (1,
X=F; 4 and 5, Y=CI or Br). (ii) the presence of the ditin compounds in the case of the chloro-iodides
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constitutes powerful evidence for the SgrN1 like pathway (Scheme 1) since the chloro-tin derivatives, being
relatively inert towards Me3SnLi, are not intermediates in their formation. (iii) the significant presence of the
iodo-tin compounds in the product mixtures of the chloro- and bromo-iodides is perplexing in terms of a non-
chain radical process but clearly intelligible in terms of the pathway outlined in Scheme 1.34

Scheme *¢

XCpHpY + Me3Sn — XCpHp*+ Y™ + MesSn ® (step 1)
XCnH, ¢ + Me3Sn = —— [XC,,H,SnMe3] < (step 2)
[XCuH,SnMe3] # + XCH,Y XCpHpSnMes3 + XCpHp®*+ Y™ (step 3)
[XCyHSnMe3]) 8 — X~ + *C,H,SnMe; (step 4)
XCpH,Y 4+ *C,H,SnMe; YC,H,SnMe; + XC,H,* (step 5)
* C,H,SnMe; 4 Me3Sn — ———» [Me;SnC,,H,SnMe;] o (step 6)
[Me3SnC,H,SnMes] s 4+ XCH,Y Me3SnCpH,SnMe; + XC H, *+ Y~ (step D
* CpH,SnMe3 + SH —————— Me3SnCHy, + S* (step 8)
2Me3Sn ¢ — > Me;3SnSnMe; (step 9)

% m=10, n=14 ; X= Cl or Br ; Y= L.  Li* is understood to be present as the counter ion. © For expedience, the
radical-halide ion adduct is understood to occur prior to steps 1, 3, and 7. © The tin reagent is given as being
monomeric for pictorial clarity. However, it should be remembered that its state of aggregation is unknown.
¢ Solvent = SH.

The major focus of this paper is the stereochemical outcome (en or zu face preference, see 1) of the
capture (steps 5 and 6; Scheme 1) of the intermediate 5-trimethylstannyladamant-2-yl radical (1,X=SnMe3)
which is mainly formed as a result of fragmentation (step 4, Scheme 1) of the appropriate halo-tin radical
anions (6 and 7, Y=Cl or Br) and, as well, by dissociative electron transfer between the initially formed bromo-
and iodo-tin compounds (2 and 3; Y=Br or I, X=SnMe3) and Me3Sn-.6 Note that the epimeric ditin and iodo-tin
mixtures obtained from the respective chloro- and bromo-iodides (Table 1) are all, within experimental error,
50:50 (E:Z). Thus, with respect to electronic control of I1-facial diastereoselectivity, the powerful o-electron
donor Me3Sn group is clearly an ineffectual bystander! This is a most surprising and profound result given the
dramatic effect of (E)-5-Me3Sn on the stability and behaviour of the adamant-2-yl carbocation.” It was
expected that this double hyperconjugative effect would also prevail in the corresponding radical species,
although to a lesser degree, to enforce a significant en face preference.3 We can only conclude that the much
favoured Cieplak hyperconjugative model!:2 for rationalising I1-facial selectivity in the current circumstances
is seriously flawed.

Finally, it can be seen (Table 1) that stannylation of the epimeric fluoro-bromides (2 and 3; X=F, Y=Br)
give essentially the same product mixture (entries 13 and 15). It is therefore clear that the products are formed
from a common intermediate, namely, the 5-fluoroadamant-2-y! radical (1,X=F). This is confirmed by the
results of stannylation in the presence of DCPH (entries 14 and 16). The modest zu face preference (E/Z =
44/56) observed for the capture of this radical species by Me3Sn- suggests an electrostatic steering effect is
operative as a consequence of the polarity of the fluorine substituent (6F = 0.40).2 In this light the
aforementioned outcome of the Me3Sn group (o ~ 0)10 becomes intelligible in terms of an electrostatic field
model as does the result reported! for the CgHs substituent (6 = 0.16).9 It should be noted that this model has
been shown recently to be best able to rationalize the stereoselectivities of nucleophilic additions to 5-
substituted(X)-2-adamantanones as well as electrophilic additions to 5-substituted(X)-2-methyleneadamantanes
not mediated by carbocationic intermediates.11.12

Full details of this study will be reported in a main paper.
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