

0040-4039(93)E0179-N

The Nature of Electronic Interactions Governing the Control of IT-Facial Selectivity in the Capture of 5-Substituted(X)-2-Adamantyl **Radicals: Electrostatic versus Hyperconjugative Effects**

William Adcock*, Christopher I. Clark and Neil A. Trout

School of Physical Sciences, The Flinders University of South Australia, Adelaide, South Australia, 5001

Abstract: An electrostatic rather than a hyperconjugative effect appears to be the dominant factor governing the control of Π -facial selectivity in the capture of 5-substituted(X)-2-adamantyl radicals.

Recently, le Noble et al¹ reported that capture of the 5-phenyladamant-2-yl radical $(1, X = C₆H₅)$, a species devoid of conformational and steric bias, occurs preferentially on the zu or syn face (58:42) i.e. dominant face preference which is *antiperiplanar* to the more electron-rich vicinal C-C bonds flanking C2. This result has been reconciled within Cieplak's transition-state hyperconjugation model.^{1,2} Herein we report results from the trimethylstannylation of a series of (E)- and (Z)-2,5-dihaloadamantanes (2 and 3, respectively) which strongly suggests that hyperconjugation is unimportant as a factor governing the control of Π -facial selectivity in the capture of 5-substituted(X)adamant-2-yl radicals (1) and, moreover, that an electrostatic field model appears more appropriate for explaining the phenomenon.

Product distributions for treatment of the chloro-iodo, bromo-iodo, and fluoro-bromo derivatives of 2 and 3 (X=I, Y=Cl; X=I, Y=Br; X=F, Y=Br) with Me₃SnLi in THF at 0°C in the absence and presence of dicyclohexylphosphine (DCPH) are listed in Table 1. An examination of the results reveals the following diagnostic traits of a free radical chain pathway for tin substitution (Scheme 1) as previously defined for 1,4-dihalobicyclo[2.2.2] octanes³: (i) the presence of DCPH (an excellent alkyl radical trap)⁵ is able to divert the reactions from predominant tin substitution to mainly reduction products by trapping the initially formed radicals (1, $X = F$; 4 and 5, $Y = Cl$ or Br). (ii) the presence of the ditin compounds in the case of the chloro-jodides

297

TABLE 1. Product Distribution Analysis of the Reaction between (E)- and (Z)-2.5-Dihakoadamantanes (2 and 3, respectively) and (Trimethylstamy))lithium in THF^a

l,

 \overline{a}

a. In a typical reaction, Me3SuLi (2 nole equivalent) in tetrahydrofuran (prepared by reacting bexamethyldtim (0.67 g. 2.08 mmo) in anhydrous THF (5 ml) with lithium (8.32 mmol) at 0°C under Ng. After argon for 5 hrs) was areas, giving errors to about 2-3%. Peak areas were not corrected for appropriate response factors. c. Ad a adamantane; Sn a SnMe₃. d. DCPH = dicyclohexylphosphine (10 mole
equivalent). constitutes powerful evidence for the $S_{RN}1$ like pathway (Scheme 1) since the chloro-tin derivatives, being relatively inert towards Me₃SnLi, are not intermediates in their formation. (iii) the significant presence of the iodo-tin compounds in the product mixtures of the chloro- and bromo-iodides is perplexing in terms of **a nonchain** radical process but clearly intelligible in terms of the pathway outlined in Scheme 1.334

Scheme I^{a-c}

***** m=10, n=14 ; $X = Cl$ or Br ; $Y = I$. L^* is understood to be present as the coun radical-halide ion adduct is understood to occur prior to steps 1, 3, and 7. ^{*d*} T **ion. ' Par expedience, the The tin reagent is given as being** monomeric for assume is university to occur pitor to steps 1, 5, and 7. The tin reagent is given as being
monomeric for pictorial clarity. However, it should be remembered that its state of aggregation is unknown.
^{*e*} So Solvent = SH.

The major focus of this paper is the stereochemical outcome (en or zu face preference, see 1) of the capture (steps 5 and 6; Scheme 1) of the intermediate 5-trimethylstannyladamant-2-yl radical $(1,X=SnMe₃)$ which is mainly formed as a result **of** fragmentation (step 4, Scheme 1) of the appropriate halo-tin radical anions (6 and 7, Y=Cl or Br) and, as well, by dissociative electron transfer between the initially formed bromo and iodo-tin compounds (2 and 3; Y=Br or I, X=SnMe₃) and Me₃Sn⁻.⁶ Note that the epimeric ditin and iodo-tin mixtures obtained from the respective chloro- and btomo-iodides (Table 1) are all, within experimental error, 50:50 (E:Z). Thus, with respect to electronic control of Π -facial diastereoselectivity, the powerful σ -electron donor MegSn group is clearly an ineffectual bystander! This is a most surprising and profound result given the dramatic effect of **(E)-S-Me3Sn** on the stability and behaviour of the adamant-Zyl carbocation.7 It was expected that this double hyperconjugative **effect** would also prevail in the corresponding radical species, although to a lesser degree, to enforce a significant en face preference.⁸ We can only conclude that the much favoured Cieplak hyperconjugative model^{1,2} for rationalising Π -facial selectivity in the current circumstances is seriously flawed.

Finally, it can be seen (Table 1) that stannylation of the epimeric fluoro-bromides (2 and 3; $X=F$, $Y=Br$) give essentially the same product mixture (entries 13 and 15). It is therefore clear that the products are formed from a common intermediate, namely, the 5-fluoroadamant-2-yl radical $(1,X=F)$. This is confirmed by the results of stannylation in the presence of DCPH (entries 14 and 16). The modest zu face preference ($E/Z =$ $44/56$) observed for the capture of this radical species by Me₃Sn⁻ suggests an electrostatic steering effect is operative as a consequence of the polarity of the *fluorine* substituent ($\sigma_F = 0.40$).⁹ In this light the aforementioned outcome of the Me₃Sn group ($\sigma_F \sim 0$)¹⁰ becomes intelligible in terms of an electrostatic field model as does the result reported¹ for the C₆H₅ substituent ($\sigma_F = 0.16$).⁹ It should be noted that this model has been shown recently to be best able to rationalize the stereoselectivities of nucleophilic additions to Ssubstituted(X)-2-adamantanones as well as electrophilic additions to 5-substituted(X)-2-methyleneadamantanes not mediated by carbocationic intermediates. $11,12$

Full details of this study will be reported in a main paper.

ACENOVVLEDGEMENT

We thank the Australian Research Council for financial assistance.

REFERENCES AND **NOTES**

- 1. Bodepudi, V.R.; le Noble, W.J. J. Org. Chem. **1991,56,2001 and references cited therein.**
- 2. **(a)** Cieplak, AS. J. Am. C/tern. Sot. 1981, 103,454O. (b) Cieplak, A.S.; Tait, B.D.; Johnson, C.R. J. Am. Chem. Soc.1987, 109, 5875.
- 3. Adcock, W.; Iyer, V.S.; Kitching, W.; Young, D. *J. Org. Chem*. **1985**, 50, 370
- 4. (a) The halogen atom abstraction step of Scheme 1 (step 5) is competitive when X or Y is I but not Cl or Br. Such reactions occur readily for alkyliodides. In contrast, halogen atom transfer is much slower for alkylbromides and -chlorides ((CH3)3CX : $X = I$, k = 3 x 10⁶ M⁻¹s⁻¹; X = Br, k = 4.6 x 10³ M⁻¹s⁻¹; X = Cl, $k = 6 \times 10^2 M^{-1} s^{-1}$ (b) Newcomb, M.; Sanchez, R.M.; Kaplan, J. J. Am. Chem. Soc. 1987, 109, 1195.
- 5. Smith, G-F.; Kuivila, H.G.; Simon, R.; Sultan, L. *J. Am. Ckm. Sot.* 1981, 103.833.
- 6. Treatment of a mixture (E/Z = 40/60) of 2-bromo-5-trimethylstannyladamantane (2 and 3; $X = SnMe₃$, Y = Br) with MegSnLi (see footnote to Table 1) provides a 50:50 mixture (determined by VPC) of the ditin compounds (2 and 3; $X = Y = SnMe₃$). An attempt to separate these mixtures by HPLC (silica gel/hexane) was not successful.
- 7. (a) Adcock, W.; Coope, J.; Shiner, V.J.. Jr.; Trout, N.A. *J. Org. Chem.* 1990, 55, 1411. (b) Adcock, W.; Trout, N.A. J. *Org. Chem.* 1991,56,3229.
- 8. (a) The stereoelectronic requirement for optimization of double hyperconjugation (antiperiplanar relationship of the participant orbitals)^{7,8b,c} is met in the E but not the Z isomer of 2.5 -disubstituted adamantanes. It should be noted that unlike the 2-adamantyl cation which is pyramidal,⁸⁰ the 2-adamantyl radical is planar.*e (b) Krijner, B.; Beverloo, H.B.; Verhoeven. J.W.; Reiss, C.A.; Goubitz, K.; Heijdenrijk, D. *J. Am. Chem. Sot.* 1989, 111,4433 and **references cited therein. (c) Adcock.** W.; Krstic, A.R; Duggan, P.J.; Shiner, V.J.. Jr.; Cooper, J.; Ensinger, M.W. *J. Am. Chem. Sot.* 1990, 1 E2,3140. (d) Dutler, R; Rank, A.; Sorensen, T.S.; Whuworth, S.M. *J. Am. Cbem. Sot.* 1989, 111, 9024. (e) Kira, M.; Akiyama, M.; Ichinose, M.; Sakurai, H. *J. Am. Chem. Soc.* **1989**, 111, 8256.
- 9. Adcock. W.; Abeywicktema. A.N. J. *Org. Chem.* **1982,47,2957.**
- 10. (a) Adcock, W.; Aldous, G.L.; Kitching, W. *J. Orgunomet. Ckm.* **1980,202.395..** (b) Adcock, W.; Iyer, V.S. J. *Org. Chem.* **1985**, 50, 1538.
- 11. Adcock, W.; Cotton, J.; Trout, N.A. *J. Org. Chem.* . Submitted for publication
- 12. (a) Electrostatic control of Π -facial selectivity of nucleophilic and electrophilic additions has been for other model systems. ^{12b,c} (b) Paddon-Row, M.N.; Wu, Y.-D.; Houk, K.N. *J. Am. Chem. Soc.* 114,10,638 and references cited therein. (c) Wu, Y.-D, Na, J.; Houk, K.N. J. *Org. Chem.* 1993.58. 4625 and references cited therein.

(Received in UK 27 September 1993; *revised* 3 November 1993; accepted 5 November 1993)